
Exploratory Data Analysis:
Visualizing High-Dimensional

Vectors

The next two examples are drawn from: 
http://setosa.io/ev/principal-component-analysis/

Wales

Scotland N. Ireland

England

Visualizing High-Dimensional Vectors

How to
visualize
these for

comparison?

Imagine we
had hundreds

of these

Using our earlier analysis: 
Compare pairs of food items across locations  

(e.g., scatter plot of cheese vs cereals consumption)
But unclear how to compare the locations

(England, Wales, Scotland, N. Ireland)!

The issue is that as humans
we can only really visualize
up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data
preferably to 1, 2, or 3

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics. 2010.

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
(We could of course flatten to the other red axis)

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned
with the red axes!

Most variability is along
this green direction

Rotate!

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
 is

alo
ng

this g
ree

n direc
tion

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
 is

alo
ng

this g
ree

n direc
tion

The idea of PCA actually works for 2D ➔ 2D as well
(and just involves rotating, and not “flattening” the data)

Principal Component Analysis (PCA)
How to project 2D data down to 1D?

The idea of PCA actually works for 2D ➔ 2D as well
(and just involves rotating, and not “flattening” the data)

Most v
aria

bility
 is

alo
ng

this g
ree

n direc
tion

before
“flattening”

2nd green axis chosen to be 90° (“orthogonal”) from first green axis

How to rotate 2D data so 1st axis has most variance

Principal Component Analysis (PCA)

• Finds top k orthogonal directions that explain the most
variance in the data
• 1st component: explains most variance along 1

dimension
• 2nd component: explains most of remaining variance

along next dimension that is orthogonal to 1st
dimension

• …

• “Flatten” data to the top k dimensions to get lower
dimensional representation (if k < original dimension)

Principal Component Analysis (PCA)

3D example from:
http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Demo

PCA reorients data so axes explain
variance in “decreasing order”

➔ can “flatten” (project) data onto a
few axes that captures most variance

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

2D Swiss Roll

PCA would just flatten this thing and  
lose the information that the data actually
lives on a 1D line that has been curved!

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

PCA would squash down this Swiss
roll (like stepping on it from the top)

mixing the red & white parts

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

2D Swiss Roll

This is the desired result

3D Swiss Roll

Projecting down to any 2D plane puts points
that are far apart close together!

3D Swiss Roll

Projecting down to any 2D plane puts points
that are far apart close together!

Goal: Low-dimensional representation where similar colored points
are near each other (we don’t actually get to see the colors)

Manifold Learning
• Nonlinear dimensionality reduction (in contrast to PCA

which is linear)

• Find low-dimensional “manifold” that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)

2. The points near x look like
they’re in a lower-dimensional

Euclidean space 
(e.g., a 2D plane in Swiss roll)

Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Do Data Actually Live on Manifolds?

Phillip Isola, Joseph Lim, Edward H. Adelson. Discovering States and
Transformations in Image Collections. CVPR 2015.

Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning.
Nature 2015.

Manifold Learning with Isomap
Step 1: For each point, find
its nearest neighbors, and

build a road (“edge”)
between them

(e.g., find closest 2
neighbors per point
and add edges to

them)

Step 2: Compute
shortest distance from

each point to every other
point where you’re only
allowed to travel on the

roads
Step 3: It turns out that given all the distances between pairs of

points, we can compute what the points should be 
(the algorithm for this is called multidimensional scaling)

Isomap Calculation Example

A
B

C

D
E

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between
every point to every other
point where we are only

allowed to travel along the
roads

Build "symmetric 2-NN" graph  
(add edges for each point to

its 2 nearest neighbors)

Isomap Calculation Example

A
B

C

D
E

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between
every point to every other
point where we are only

allowed to travel along the
roads

This matrix gets fed into
multidimensional scaling to get

1D version of A, B, C, D, E

The solution is not unique!

Build "symmetric 2-NN" graph  
(add edges for each point to

its 2 nearest neighbors)

Isomap Calculation Example

Multidimensional scaling demo

3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 2000.

Some Observations on Isomap
The quality of the result
critically depends on the
nearest neighbor graph

Ask for nearest neighbors to
be really close by

Allow for nearest neighbors
to be farther away

There might not be enough
edges

Might connect points that
shouldn’t be connected

In general: try different parameters for nearest neighbor graph
construction when using Isomap + visualize

t-SNE 
(t-distributed stochastic

neighbor embedding)

t-SNE High-Level Idea #1
• Don't use deterministic definition of which points are neighbors
• Use probabilistic notation instead

0

0.05

0.1

0.15

0.2

A and B are "sim
ilar"

A and C are "sim
ilar"

A and D are "sim
ilar"

... D and E are "sim
ilar"

t-SNE High-Level Idea #2
• In low-dim. space (e.g., 1D), suppose we just randomly

assigned coordinates as a candidate for a low-dimensional
representation for A, B, C, D, E (I'll denote them with primes):

A'B'C' D'E'
• With any such candidate choice, we can define a probability

distribution for these low-dimensional points being similar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

t-SNE High-Level Idea #3
• Keep improving low-dimensional representation to make the

following two distributions look as closely alike as possible

0
0.05
0.1

0.15
0.2

A, B sim
ilar

A, C sim
ilar

A, D sim
ilar

... D, E sim
ilar

This distribution stays fixed

This distribution changes as we move around low-dim. points

Manifold Learning with t-SNE

Demo

Technical Detail for t-SNE

pj|i =
exp(−∥xi−xj∥2

2σ2
i

)
∑

k ̸=i exp(−∥xi−xk∥2

2σ2
i

)

For a specific point i, point i picks point j (≠ i) to
be a neighbor with probability:

Suppose there are n high-dimensional points x1, x2, …, xn

𝜎i (depends on i) controls the probability in which point j would be picked by i
as a neighbor (think about when it gets close to 0 or when it explodes to ∞)

𝜎i is controlled by a knob called 'perplexity'
(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Fleshing out high level idea #1

Points i and j are "similar" with probability:

This defines the earlier blue distribution

pi ,j =
pj|i + pi|j

2n

Technical Detail for t-SNE

Low-dim. points i and j are "similar" with probability:

Denote the n low-dimensional points as x1', x2', …, xn'

Fleshing out high level idea #2

This defines the earlier green distribution

qi ,j =
1

1+∥x′
i −x′

j ∥2

∑
k ̸=m

1
1+∥x′

k−x′
m∥2

Fleshing out high level idea #3

Use gradient descent (with respect to qi,j) to minimize:
∑

i ̸=j

pi ,j log
pi ,j

qi ,j

This is the KL-divergence between distributions p and q

Visualization

Many real UDA problems: 
The data are messy and it’s not

obvious what the “correct”
labels/answers look like, and

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels)
after “unsupervised” methods (don’t require labels)

Important: 
Handwritten digit demo was a
toy example where we know
which images correspond to

digits 0, 1, … 9

Top right image source: https://bost.ocks.org/mike/miserables/

is a way of debugging data analysis!

Example: Trying to
understand how people

interact in a social network

Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course
webpage to a scikit-learn Swiss roll example using ~10
methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be
all that interpretable (you can scale axes, shift all points, etc)

