
Exploratory Data Analysis: 
Visualizing High-Dimensional 

Vectors

The next two examples are drawn from: 
http://setosa.io/ev/principal-component-analysis/



Wales

Scotland N. Ireland

England

Visualizing High-Dimensional Vectors

How to 
visualize 
these for 

comparison?

Imagine we 
had hundreds 

of these

Using our earlier analysis: 
Compare pairs of food items across locations  

(e.g., scatter plot of cheese vs cereals consumption)
But unclear how to compare the locations 

(England, Wales, Scotland, N. Ireland)!



The issue is that as humans 
we can only really visualize 
up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data 
preferably to 1, 2, or 3



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews: 
Computational Statistics. 2010.



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
(We could of course flatten to the other red axis)



Principal Component Analysis (PCA)
How to project 2D data down to 1D?



Principal Component Analysis (PCA)
How to project 2D data down to 1D?



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned 
with the red axes!

Most variability is along 
this green direction

Rotate!



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
 is 

alo
ng 

this g
ree
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tion



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Most v
aria

bility
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ng 
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tion

The idea of PCA actually works for 2D ➔ 2D as well 
(and just involves rotating, and not “flattening” the data)



Principal Component Analysis (PCA)
How to project 2D data down to 1D?

The idea of PCA actually works for 2D ➔ 2D as well 
(and just involves rotating, and not “flattening” the data)

Most v
aria

bility
 is 

alo
ng 

this g
ree

n direc
tion

before 
“flattening”

2nd green axis chosen to be 90° (“orthogonal”) from first green axis

How to rotate 2D data so 1st axis has most variance



Principal Component Analysis (PCA)

• Finds top k orthogonal directions that explain the most 
variance in the data
• 1st component: explains most variance along 1 

dimension
• 2nd component: explains most of remaining variance 

along next dimension that is orthogonal to 1st 
dimension

• …

• “Flatten” data to the top k dimensions to get lower 
dimensional representation (if k < original dimension)



Principal Component Analysis (PCA)

3D example from: 
http://setosa.io/ev/principal-component-analysis/



Principal Component Analysis (PCA)

Demo



PCA reorients data so axes explain 
variance in “decreasing order” 

➔ can “flatten” (project) data onto a 
few axes that captures most variance



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll

PCA would just flatten this thing and  
lose the information that the data actually 
lives on a 1D line that has been curved!



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

PCA would squash down this Swiss 
roll (like stepping on it from the top) 

mixing the red & white parts



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll



2D Swiss Roll

This is the desired result



3D Swiss Roll

Projecting down to any 2D plane puts points 
that are far apart close together!



3D Swiss Roll

Projecting down to any 2D plane puts points 
that are far apart close together!

Goal: Low-dimensional representation where similar colored points 
are near each other (we don’t actually get to see the colors)



Manifold Learning
• Nonlinear dimensionality reduction (in contrast to PCA 

which is linear)

• Find low-dimensional “manifold” that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)

2. The points near x look like 
they’re in a lower-dimensional 

Euclidean space 
(e.g., a 2D plane in Swiss roll)



Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg



Do Data Actually Live on Manifolds?

Phillip Isola, Joseph Lim, Edward H. Adelson. Discovering States and 
Transformations in Image Collections. CVPR 2015.



Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. 
Nature 2015.



Manifold Learning with Isomap
Step 1: For each point, find 
its nearest neighbors, and 

build a road (“edge”) 
between them

(e.g., find closest 2 
neighbors per point 
and add edges to 

them)

Step 2: Compute  
shortest distance from 

each point to every other 
point where you’re only 
allowed to travel on the 

roads
Step 3: It turns out that given all the distances between pairs of 

points, we can compute what the points should be 
(the algorithm for this is called multidimensional scaling)



Isomap Calculation Example

A
B

C

D
E

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)



Isomap Calculation Example

A
B

C

D
E

2 nearest neighbors of A: B, C
2 nearest neighbors of B: A, C
2 nearest neighbors of C: B, D
2 nearest neighbors of D: C, E
2 nearest neighbors of E: C, D

5

In orange: road lengths

5
5

5

8
8

A B C D E

A 0 5 8 13 16

B 5 0 5 10 13

C 8 5 0 5 8

D 13 10 5 0 5

E 16 13 8 5 0

Shortest distances between 
every point to every other 
point where we are only 

allowed to travel along the 
roads

This matrix gets fed into 
multidimensional scaling to get 

1D version of A, B, C, D, E

The solution is not unique!

Build "symmetric 2-NN" graph  
(add edges for each point to 

its 2 nearest neighbors)



Isomap Calculation Example

Multidimensional scaling demo



3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric 
Framework for Nonlinear Dimensionality Reduction. Science 2000.



Some Observations on Isomap
The quality of the result 
critically depends on the 
nearest neighbor graph

Ask for nearest neighbors to 
be really close by

Allow for nearest neighbors 
to be farther away

There might not be enough 
edges

Might connect points that 
shouldn’t be connected

In general: try different parameters for nearest neighbor graph 
construction when using Isomap + visualize



t-SNE 
(t-distributed stochastic 

neighbor embedding)



t-SNE High-Level Idea #1
• Don't use deterministic definition of which points are neighbors
• Use probabilistic notation instead

0

0.05

0.1

0.15

0.2

A and B are "sim
ilar"

A and C are "sim
ilar"

A and D are "sim
ilar"

... D and E are "sim
ilar"



t-SNE High-Level Idea #2
• In low-dim. space (e.g., 1D), suppose we just randomly 

assigned coordinates as a candidate for a low-dimensional 
representation for A, B, C, D, E (I'll denote them with primes):

A'B'C' D'E'
• With any such candidate choice, we can define a probability 

distribution for these low-dimensional points being similar

0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar



0
0.075
0.15

0.225
0.3

A', B' sim
ilar

A', C' sim
ilar

A', D' sim
ilar

... D', E' sim
ilar

t-SNE High-Level Idea #3
• Keep improving low-dimensional representation to make the 

following two distributions look as closely alike as possible

0
0.05
0.1

0.15
0.2

A, B sim
ilar

A, C sim
ilar

A, D sim
ilar

... D, E sim
ilar

This distribution stays fixed

This distribution changes as we move around low-dim. points



Manifold Learning with t-SNE

Demo



Technical Detail for t-SNE

pj|i =
exp(−∥xi−xj∥2

2σ2
i

)
∑

k ̸=i exp(−∥xi−xk∥2

2σ2
i

)

For a specific point i, point i picks point j (≠ i) to 
be a neighbor with probability:

Suppose there are n high-dimensional points x1, x2, …, xn

𝜎i (depends on i) controls the probability in which point j would be picked by i 
as a neighbor (think about when it gets close to 0 or when it explodes to ∞)

𝜎i is controlled by a knob called 'perplexity' 
(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Fleshing out high level idea #1

Points i and j are "similar" with probability:

This defines the earlier blue distribution

pi ,j =
pj|i + pi|j

2n



Technical Detail for t-SNE

Low-dim. points i and j are "similar" with probability:

Denote the n low-dimensional points as x1', x2', …, xn'

Fleshing out high level idea #2

This defines the earlier green distribution

qi ,j =
1

1+∥x′
i −x′

j ∥2

∑
k ̸=m

1
1+∥x′

k−x′
m∥2

Fleshing out high level idea #3

Use gradient descent (with respect to qi,j) to minimize:
∑

i ̸=j

pi ,j log
pi ,j

qi ,j

This is the KL-divergence between distributions p and q



Visualization

Many real UDA problems: 
The data are messy and it’s not 

obvious what the “correct” 
labels/answers look like, and 

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels) 
after “unsupervised” methods (don’t require labels)

Important: 
Handwritten digit demo was a 
toy example where we know 
which images correspond to 

digits 0, 1, … 9

Top right image source: https://bost.ocks.org/mike/miserables/

is a way of debugging data analysis!

Example: Trying to 
understand how people 

interact in a social network



Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course 
webpage to a scikit-learn Swiss roll example using ~10 
methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features 
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be 
all that interpretable (you can scale axes, shift all points, etc)


